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The effect of liquid surface curvature on enthalpy of vaporization is investigated. The limits are
found at which this effect begins to manifest itself both for the concave and convex surface.

Enthalpy of vaporization, which appears in the Clapeyron equation is related
to the plane liquid surface. The aim of this work is the investigation of the effect
of the liquid surface curvature on enthalpy of vaporization which is significant for
the description of the disperse systems such as fog or liquid in pores.

This work resumes the study by Adamson and Manes'. It extends their considera-
tions by investigating the liquid surfaces with convex meniscus and complements
them with the data on curvature radii for which the effect on the enthalpy of vaporiza-
tion or condensation begins to manifest itself. The effect of the surface curvature on
the liquid surface tension is included into the calculation, too.

THEORETICAL

The theoretical basis of the problem is given by the Kelvin equation. For the case of
ideal behaviour of the vapour phase over liquid drops of equal size, it can be written
in the form

RTlnPLT,1) 2y(T,r) V(T)
(1)

P,(T) r

If the liquid surface is formed by a convex meniscus, then Eq. (1) takes the form

RT ln Pm('T, r) = 2y(T, r) V(T)
(2)

PcJT)

Quantities P, Pm, and Pç denote the saturated vapour pressure over the drop
surface, convex meniscus, and plane surface, y is the surface tension, V the liquid
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molar volume, T the temperature, R the gas constant, and r the curvature radius.
Quantities P and V are functions of temperature only. r, "m' and y are functions
of temperature and curvature radius.

The relation sought can be derived, e.g., in terms of Eq. (1) (or analogously in
terms of Eq. (2)). By differentiating with respect to temperature, we get the relation

RTIn P + RT( — RlnP —RT = + yl. (3)\ 3T Jr dT rL \ôTJr dTJ

By inserting from the Clausius—Clapeyron equation into the left-hand side of Eq. (3)
for the second and fourth term and on using Eq. (1), we can write

— LHr = = — 2i
[v ()r + (4)

where AHc,(AHr) denotes the enthalpy of vaporization from the plane (curved)
surface and A(AH) their difference.

CALCULATION AND RESULTS

Equation (4) was used for calculating quantity A(H) for water at 29815 K with
curved surface. The calculation was carried out for three chosen values of curvature
radii, viz. r = i0, 10-8, and i0 m. So the information on the effect of curvature
radius size on the change of enthalpy of vaporization was obtained simultaneously.
The data on surface tension and its temperature dependence as well as the data on
molar volume and its temperature dependence were taken from the literature24.
The data on the effect of surface curvature on surface tension were taken from work
by Tolman5.

The values of input quantities for calculating (4H) at 29815 K are as follows:
= 7195. i0 N/m, dy/dT 16. io N/mK, V = 181682. 10-6 m3/mol, and

dV/dT = 5897. i0 m3/mol K. It was assumed in calculating that the dependence
of (ay/T)r and dV/dT does not change with the curvature radius size. Further for

10 m, y 5972. i0 N/rn, for r = 10-8 rn, y = 7O51 . iO N/m, and
for r = iOm, the original value y = 7F95 . iO N/m was used.

The results of calculation are as follows: A(AH) (r = io m) = 4O9 J/mol.
It is the value which is AHr lower than L\H under the chosen conditions. As to its
size, it corresponds to O1% of the value of enthalpy of vaporization AH(29815 K) =
= 4O63 kJ/mol. Further, iSH) (r = 1O_8 m) = 405 J/mol, i.e., 1% of AH
and A(AH) (r = i09 m) = 369 kJ/mol, i.e. 91° of the value of
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1402 Svoboda:

It is evident that in the same way we can achieve, in terms of Eq. (2), analogous
conclusions for a liquid whose surface forms convex meniscus. In this case, the values
of enthalpy of vaporization would be 01, 1, and 91% higher than those determined
from plane surface.

Further interesting consequences follow from the following consideration: Let us
assume the case when ln (Pr/P) = 0 and consequently P = P. This condition is
satisfied for two states. In the first case, P approaches P as far as reaches the state
when the surface curvature radius is so large that the Kelvin equation ceases to be
valid. In the second case it is necessary to admit that decreasing the curvature radius
leads to increasing the difference of r — P but at the same time, this difference
decreases with increasing temperature for a chosen constant curature. In accordance
with this assumption, a temperature must exist for which P — P = 0. Let us find
this temperature.

Let us rearrange Eq. (2) so as to fulfil the assumption of in (Pr/Pc,3) = 0 at a sought
temperature T. Then

A(AH) = —
[v ()r + (5)

On comparing Eqs (4) and (5), it is apparent that T = Tjust for 2yV/r = 0. This
condition is met when y = 0. This is possible only at critical temperature 7, and
from that follows T = T.

The general view of the problems studied can be seen in Fig. 1. For the sake of
simplicity let us assume the validity of the Clausius—Clapeyron equation which,
plotted in coordinates in P vs 1/T, represents a linear dependence. Then line segment
AK illustrates the dependence of saturated vapour pressure on temperature for
a liquid with plane surface, line segments BK, CK, and DK the dependence of satu-
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FIG. I

The dependence of In P on l/T for the curved
liquid surfaces
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rated vapour pressure on temperature for the chosen gradually increasing drop
curvatures. Line segment EK illustrates symbolically the analogous situation for the
surface formed by convex menniscus of curvature radius r = iO m. The decrease
in enthalpies of vaporization for liquids with curved surface and the increase in
enthalpies of vaporization for the surfaces formed by meniscus is evident from the
figure as well. It follows from the changes of derivatives of In P with respect to 1/T
for single liquid surfaces.

From the results presented follows that the effect of liquid surface curvature on
enthalpy of vaporization begins to manifets itself markedly only from curvature
radii r < 10 m. The decrease in droplet radius (meniscus) by one order of magni-
tude leads to the decrease (increase) in difference A(tH) by one order, too. The
results of calculating E(AH) showed as well that the effect of curvature on quantity y
manifests itself only at extreme r iO m.

The conclusions following from this study should be accepted, however, with
a certain degree of caution. The main reason consists not in the application of simpli-
fying assumptions in deriving the Kelvin equation or expressing the dependence of
surface tension on the curvature radius. It is hiden in the doubt whether the methods
of thermodynamics are still usable for such low values of curvature radii within
the range of iO7—iO9 m. However, we can say with certainty that in systems met
in experimental practice, the effect of liquid surface curvature on enthalpy of vapo-
rization does not manifest itself.
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